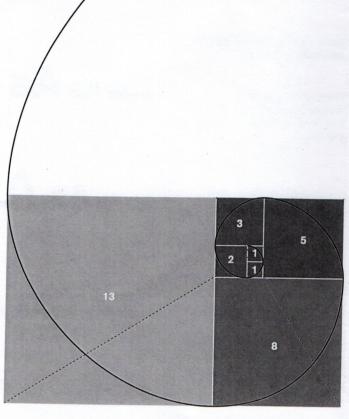
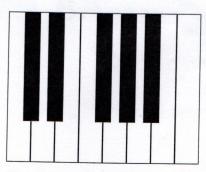
Fibonacci sequence

108


Another useful model when considering proportions is the Fibonacci sequence. Named for Italian mathematician Leonardo Fibonacci (c.1170–1240), a Fibonacci sequence describes a sequence in which each number is the sum of the two preceding numbers:

0 1 [1+0] 2 [1+1] 3 [1+2] 5 [2+3] 8 [3+5] 13 [5+8] 21 [8+13] 34 [13+21]


As the numbers in a Fibonacci sequence increase, the proportion between any two numbers very closely approximates the proportion in a golden section (1:1.618). For example, 21:34 approximately equals 1:1.618. Nature is full of examples of the Fibonacci sequence and the golden section, from the intervals of branches on a tree to the shell of a chambered nautilus.

Fibonacci's sequence always began with 1 but the proportion between any two numbers remains constant when the sequence is multiplied:

0	0	0
2	3	4
2	3	4
4	6	8
6	9	12
10	15	20
16	24	32
26	39	52
42	63	84
88	102	136

2 3

Above, a spiral describing a Fibonacci series (and the growth of a chambered nautilus). The red rectangle on the upper right approximates a golden section. As each square in the sequence is added, the orientation of the golden section changes from vertical to horizontal.

Left, one of the many examples of a Fibonacci sequence is the musical octave as seen on a piano—eight white keys and five black keys (separated into a group of two and a group of three).